
NNdef: Livecoding Digital Musical Instruments in
SuperCollider using Functional Reactive

Programming
Miguel Cerdeira Negrão

School of Technology and Management
Polytechnic Institute of Leiria

Portugal
miguel.negrao@ipleiria.pt

Abstract
The SuperCollider audio synthesis environment allows the
definition of Synths, digital instrumentswhich generate sound
using a graph of interconnected unit generators. In SuperCol-
lider the definition of a Synth is mostly declarative, on the
other hand the logic for controlling parameters of a Synth us-
ing musical controllers is usually implemented in a different
context using callbacks and explicit state.

This paper presents a different approach where functional
reactive programming (FRP) is used to define the control
logic of the instrument, taking inputs from musical con-
trollers, mobile apps or graphical user interface (GUI) wid-
gets and sending outputs to the audio graph. Both audio and
FRP graphs are defined in the same context and compiled
simultaneously avoiding a hard division between audio and
control logic.
An FRP implementation is used in the NNdef class to

enable livecoding of both audio and FRP code, with hot-
swap allowing an interactive workflow. Also included is a
system to persist the state in the FRP network in order to
save and recall the instrument at a later time.

CCSConcepts •Applied computing→ Sound andmu-
sic computing;

Keywords livecoding, functional reactive programming,
digital musical instrument

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FARM ’18, September 29, 2018, St. Louis, MO, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5856-9/18/09. . . $15.00
https://doi.org/10.1145/3242903.3242905

ACM Reference Format:
Miguel Cerdeira Negrão. 2018. NNdef: Livecoding Digital Musical
Instruments in SuperCollider using Functional Reactive Program-
ming. In Proceedings of the 6th ACM SIGPLAN International Work-
shop on Functional Art, Music, Modeling, and Design (FARM ’18),
September 29, 2018, St. Louis, MO, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3242903.3242905

1 Introduction
Algorithmic computer music sound synthesis environments
enable the creation of networks of unit generators (UGens),
which define an instrument or synthesizer, as well as the
scheduling of sound events, using a programming language.
Unit generators synthesize or transform sound and can be
connected to form complex audio instruments. In a textual
programming language instruments and sound events are
defined using segments of code which are sometimes called
"patches". SuperCollider is one well known example of a
computer music synthesis environment with an interpreted
high-level general-purpose programming language.

An important development in this area is livecoding, where
snippets of code are evaluated causing changes in ongoing
processes. Livecoding allows quick experimentation and in-
cremental construction of patches, enabling a playful explo-
ration of compositional possibilities. It also makes possible
the on-stage, simultaneous creation and manipulation of
patches during a live performance for an audience.
Another relevant development is the use of musical con-

trollers for performing a digital instrument. Different sorts
of devices which capture physical motion into a data stream
have been used to directly control parameters of a patch.
Notable examples are commercial Musical Instrument Digi-
tal Interface (MIDI) controllers, smartphone and tablet apps
communicating via Open Sound Control (OSC) [20], and
custom-made sensor microcontrollers and microcomputers
such as the Arduino board [15] and the Raspberry Pi com-
puter [1].

Functional Reactive Programming (FRP) deals with events
which appear at unpredictable times and as such it is well
suited to deal with incoming data from electronic musical
controllers. An FRP network can therefore be connected to

https://doi.org/10.1145/3242903.3242905
https://doi.org/10.1145/3242903.3242905

FARM ’18, September 29, 2018, St. Louis, MO, USA Miguel Cerdeira Negrão

an audio network in order to create a unified audio synthesis-
processing instrument which can be played with physical
controllers.

When using a callback approach the definition of the UGen
graph is declarative while the control logic is not, creating
a mismatch. When using a general-purpose FRP library to
control an audio network it is necessary to create some boil-
erplate code and the two networks must be defined and
managed separately.
This paper presents a specific integration of an FRP sys-

tem within an audio livecoding library, implemented in the
SuperCollider synthesis environment which attempts to sim-
plify the creation of digital musical instruments. The system
is interfaced through the NNdef class whose features will be
explained in detail.

The specific contributions are:
• Integration between an FRP network and a constant-
rate high-efficiency audio network.

• Simultaneous definition and compilation of both net-
works.

• Hot-swapping and persistence of the FRP network
enabling livecoding digital instruments which use mu-
sical controllers.

2 SuperCollider and Livecoding Using
JITLib

SuperCollider [12–14] is a programming language for real-
time audio synthesis and algorithmic composition, with an
efficient sound synthesis engine (scsynth) designed specifi-
cally for music composition and performance. Coming from
the tradition of MUSIC-N, it allows the interconnection of
UGens to form larger digital signal processing (DSP) net-
works. The SuperCollider language (sclang), is a general-
purpose object-oriented language (OOP) with some features
of functional programming. Blocks of code are evaluated
in real-time by the sclang interpreter. The SuperCollider
standard class library includes, besides the general purpose
abstractions such as collections, powerful procedures for
algorithmic creation of UGen graphs and rich abstractions
for musical events (routines, patterns, etc.). The synthesis en-
gine (scsynth), written in C/C++, combines UGens according
to pre-made declarative descriptions, SynthDefs, instantiat-
ing them as Synths, which can be dynamically created and
destroyed. scsynth is a separate process and communicates
with sclang via OSC messages.

A Synth in SuperCollider consists of a network of UGens
whose shape cannot be changed once it has started playing.
Although this makes for a very efficient design, it limits
interactivity. The JITLib[11, 17, 18]1 attempts to overcome
this limitation by introducing proxies, abstract placeholders
which allow seamlessly switching between different audio
graph definitions. When a new Synth definition is assigned
1JITLib stands for Just In Time programming library.

to the proxy, the previous Synth is stopped and a new one
starts, usually using a cross-fade. The Ndef class2 of JITLib
associates a unique namewith a proxy, enabling quick access,
which is useful when livecoding.

The NNdef class3, an extension of JITLib’s Ndef, is the
main focus of this paper. It is an extension of JITLib using
FRP for processing incoming data streams from physical
controllers and other sources.

Although SuperCollider is not a pure functional language,
and is therefore not the best candidate for using FRP, given
that it has a vast amount of functionality relating to com-
puter music readily available, it was deemed a worthwhile
experiment seeing what could be achieved with FRP in such
a language.
The NNdef class is part of FPLib, a library for functional

programming in SuperCollider created by the author. NNdef
integrates an FRP network4 into the audio Ugen network
contained in a proxy in JITLib, with the aim of allowing the
creation, through livecoding, of digital musical instruments.
The audio and event networks connect at bridging ports
where an outgoing event from the FRP network becomes a
continuous audio/control signal5. Inputs to the FRP network
are obtained from MIDI controllers via the Modality toolkit
[4], OSC messages and GUI widgets.

The main goal when developing NNdef was enabling the
livecoding of digital instruments which use musical con-
trollers, either for live performance or for composition6. Of-
ten creating a digital instrument with a physical controller is
a trial and error process where the instrument undergoes sev-
eral iterations until arriving at a final design. The synthesis
and control logic are developed iteratively, with the feedback
between physical motion and sonic result being continuously
evaluated, and the corresponding patch updated. Taking this
into account it was desirable that the livecoding interface
would allow defining the synthesis and control logic together
in the same context.

It was also desirable when livecoding an instrument that
its current state would not be lost when switching over to a
new definition of the instrument, particularly if the instru-
ment has modal control logic7 which goes beyond a direct
2Ndef stands for node proxy definition.
3The name NNdef is a playful derivation of Ndef: since Ndef has one type
of graph, and NNdef has two (audio and FRP), it uses two Ns.
4More precisely, like Ndef, NNdef can have multiple Synths and each Synth
has its own associated FRP graph.
5In SuperCollider UGens can operate at audio-rate or at control-rate, which
is slower. The later is used with low-frequency signals in order to decrease
CPU usage.
6A broad view of what is a musical instrument should be taken. For instance,
it is common for electroacoustic composers to "play" "instruments" custom
made for a specific piece, recording material which is then later used to
assemble the final fixed media composition. These are one-off instruments,
sometimes never played again, but still they are often controlled using a
musical controller.
7The instrument can enter different modes of operation, responding differ-
ently to input data depending on the current mode.

NNdef FARM ’18, September 29, 2018, St. Louis, MO, USA

mapping between control values from devices and synthesis
parameters. Finally, in the case of a modal instrument, it
should be possible to persist the current mode of operation
to disk, in order to later pick up a session in the same state.

3 FRP and Livecoding
A digital instrument can be though of as set of inputs from
control devices (e.g. a MIDI surface), a set of DSP blocks that
produce an audio stream, and control logic in between to
allow incoming events from the physical devices to affect
the state of, as well as create and destroy, the DSP blocks.
The traditional method of dealing with incoming events

is through callback functions. Callback functions, although
easy to define lack composability and often require explicit
state manipulation. Functional Reactive Programming, or
FRP, is a paradigm for programming dynamic and reactive
systems using first-class composable abstractions. Most of
the original work on FRP was done in the Haskell program-
ming language with two main flavours, Classic FRP [9, 10]
and Arrowized FRP [5]. In Classic FRP the two main abstrac-
tions are event streams (sequences of discrete-time event
occurrences) and behaviours or signals (time-varying val-
ues). Currently there are several well-maintained libraries
for FRP in Haskell such as reactive-banana [3], Yampa [5],
or reflex [19].

FRP implementations typically do not allow changing code
at runtime, which is sometimes referred to as hot-swapping,
nevertheless there is ongoing research in this area. The ELM
language [6] has hot-swapping capabilities [7] which are
used in an interactive debugger [8] which has the stated
goal of enabling interactive programming. ELM’s interac-
tive debugger also allows time-travelling, that is, the FRP
graph state can be saved, rewound and replayed again. The
Midair library for Haskell [16] allows hot-swapping sub-
components of the FRP graph as a first-class operation.
In textual languages hot-swapping makes possible inter-

active programming which is particularly well-suited for
musical and audio-visual applications.

4 FRP in FPLib
FPLib is a library for functional programming in SuperCol-
lider. Although the SuperCollider language is object-oriented
it has first-class higher-order functions (closures) as well as
recursion with tail-call optimization, which allows for func-
tional programming idioms, although with some limitations8.
FPLib implements a system similar to Haskell’s type classes,
but since SuperCollider is dynamically typed, whether a class
is an instance of a type class is only determined at runtime.
The Monoid, Functor, Applicative Functor, Traversable and
Monad type classes are provided together with the associated
combinator functions. The implementation mostly follows

8SuperCollider doesn’t have pattern matching, recursive definitions, curry-
ing, or monadic I/O.

Table 1. Correspondence between function names in FPLib
and Haskell.

FPLib Haskell
select filter

collect fmap

inject fold

mreduce mconcat

|+| <>

<%> <$>

Haskell’s, although for some functions (e.g. traverse when
passed an empty list) types have to be provided manually
as there isn’t a type system available to determine them au-
tomatically. Functions in SuperCollider are not curried by
default, a curried method was implemented to convert a
non-curried function to curried.

FPLib includes an FRP library which stays close to Classic
FRP. It has event streams (class EventStream) and signals
(class FPSignal9). FPSignals are slightly different from the
behaviours of Classic FRP: behaviours model any continuous
time function f : R → A, while signals only model step
functions.
The implementation of EventStream, FPSignal and child

classes (corresponding to combinators such as merge, collect,
hold, select and inject) was directly ported from the reactive-
web library for the Scala programming language [2]. The
interface for defining, starting and stopping an FRP network,
input callback registration, reactimate functions (reacting
to output events) and some combinators (e.g. <@> and <*>)
were based on Haskell’s reactive-banana library. The method
names used tried to follow the names traditionally used for
the same functionality in SuperCollider which are in some
cases different from Haskell (see table 1).

EventStream and FPSignal both provide a Functor instance.
The corresponding collect method returns a new object
which transforms each value from the original object using a
supplied function. EventStream provides a Monoid instance
(|+| and zero methods) which allows merging events. FPSig-
nal provides an Applicative Functor instance (<*> method)
which allows applying a time-varying function to a time-
varying value. It is also possible to filter an event stream
using the select method and a predicate function. State can
be explicitly held using the inject and injectF methods.
With inject a function is supplied which given an incoming
value and the current state determines the next state. The
injectFmethod should be called on an event stream carrying
functions. When an event arrives the function it is carrying
is applied to the current state in order to determine the next
state. Signals and event streams mainly interact using the
hold method, which converts an event stream into a signal
9SuperCollider has a single global namespace and the class name Signal
was already taken.

FARM ’18, September 29, 2018, St. Louis, MO, USA Miguel Cerdeira Negrão

Figure 1. NNdef internal structure

Sound Card

MIDI HID (Modality) OSC GUI
A

ud
io

FR
P

Pe
rs

is
te

nt
 S

ta
te

Audio

FRP

N
am

ed
C

o
nt

ro
l

st
o

re
 m

et
ho

d
s

en
G

et
en

Se
t

ge
t

se
t

enKr, enAr

store

node

by remembering the last value, and using <@> which applies
a time-varying function contained in a signal to an event
stream. All functions passed to these combinators should be
pure (no side-effects), nevertheless SuperCollider gives no
guarantees in this regard, it is up to the user to be disciplined.
To determine side-effects to be performed on an event

stream the enOut method (equivalent to reactimate) is used.
This method should be called on an event stream carrying IO

values. The IO class is just a wrapper for a normal function
which implements the >>= and pure methods of the Monad
type class for sequencing actions. Placing an action inside a
function will delay its execution.

5 NNdef
In this section we will examine the NNdef class and its in-
teraction with the FRP library. Similarly to Ndef, an audio
network is defined with NNdef by associating a key with a
function describing the interconnection of UGens. In the fol-
lowing example a square wave (Pulse) is sent to a resonant
low-pass filter (RLPF):

NNdef(\x, {

RLPF.ar(

Pulse.ar(freq :440), //Hz

freq: 1000, //Hz

rq:0.1)

}). play

An FRP network is attached to this graph by obtaining
events from an input source and sending events to a Named-
Control, a UGen which receives control data from the Super-
Collider language.

NNdef can receive inputs from different types of sources.
For human interface devices (HID), such as pointing devices
and gamepads, and MIDI based controllers, the Modality
library is used. This library facilitates the acquisition of data
from, and control of, commercially available controllers via
the aforementioned protocols. Each physical element (e.g.
fader, knob) has a representation as an object which is placed
in a tree-like data structure which mimics the spatial config-
uration of the device. From such an object an event stream
can be obtained using enIn and a signal with enInSig (initial-
ized with the current value of the element, which is cached
by Modality). Input nodes to the FRP network can also be
obtained from OSC messages with a given address pattern
and sclang GUI widgets.
The enDebug method prints incoming values to a node to

the post window with a given label. This simplifies debug-
ging the behaviour of the FRP network.
An event from the FRP network can reach the Synth’s

audio network by passing through a bridging node. By call-
ing enKr or enKrUni on an FRP node, a callback is registered
and a new NamedControl with the given name is created.
If no name is given one is automatically assigned, in which
case the created control is hidden in the NNdef GUI inter-
face. When an event reaches this node a value is sent to the
associated NamedControl either as is (enIn), clipped to a cer-
tain range (enIn with a ControlSpec10 parameter) or mapped
between ranges (enInUni).

When calling enKr on an EventSource an initial value must
be supplied to be used at Synth instantiation time. Since an
FPSignal already has a current value when the network is
compiled, calling enKr on it will use that value for initializing
the NamedControl.
We now go over a concrete example. In the following

listing input events are obtained from the first slider of the
first page of a Korg NanoKONTROL MIDI controller. The
MIDI controller is accessed using the Modality library:

MKtl('nnkn0 ',"korg -nanokontrol ");

The input is obtained as a signal, using enInSig. This
method is used, instead of enIn, in order to automatically ini-
tialize the NamedControl with the value which corresponds
to the current slider position. The node is then connected
to the audio network with an automatic control name, and
mapping values between 0 and 1 to values between 80Hz
and 1000Hz exponentially. The control-rate signal created
with enKrUni is used as the frequency of the square wave.

10A ControlSpec in SuperCollider represents an injective function f :
[0, 1] → A ⊂ R. It is commonly used to map between two ranges, or
constrain values to a given range.

NNdef FARM ’18, September 29, 2018, St. Louis, MO, USA

NNdef(\x, {

//get the dictionary of elements

var k = MKtl('nnkn0 '). elementGroup;

var page = 0;

var column = 0;

// convert value in [0,1] range to the

//[80 ,1000] range exponentially

var spec = [80 ,1000 ,\exp , 0, 80]. asSpec;

//get the first slider on first page

var freq = k[\sl][page][column]

//FRP INPUT

.enInSig

.enDebug (" freqSlider ")

//FRP OUTPUT

.enKrUni(lag: 0.1, spec: spec);

//AUDIO

RLPF.ar(

Pulse.ar(freq), //Hz

freq: 1000, //Hz

rq:0.1)

}). play

5.1 Hot-swap
When the NNdef is redefined by associating a new function
with the same key, for instance by re-running a modified
snippet of code, the previous FRP network is destroyed (re-
moving all registered callbacks) and a new network is auto-
matically created. Since all functions should be pure, state
is only kept in the FPSignal nodes (the current value) and
in the inject nodes (the nodes which allow explicit state). If
this state was erased when the FRP network was destroyed
then the current state of the instrument would be lost. One
consequence would be that a modal instrument would forget
the current mode when being re-evaluated, reverting to the
initial mode. To avoid this situation the FRP library imple-
ments hot-swapping which, when possible, automatically
carries the state from the previous FRP network to the new
one.

When redefining an NNdef, if the new graph has the same
shape as the previous one, then the state of the previous
graph is saved and copied to the new one. The execution
of the output IO actions is implemented by merging all re-
actimate event sources, thus forming a single event stream
carrying actions to be executed. For the purpose of saving
the state, the FRP graph is traversed starting at this end node
and following the parents, being careful to avoid traversing
the same path twice, and taking note of the current state
along the way. With this scheme, if the NNdef is redefined
and only the (pure) functions passed to the combinators are
changed, then the shape of the graph is the same. In this
case the new functions will operate on the old state, which
is saved by the hot-swap functionality. The granularity of

Figure 2. injectFStore implementation

the hot-swapping is the NNdef, it is not possible to hot-swap
only a subsection of the NNdef FRP graph.
Let us consider a specific example where a single button

with corresponding event stream es can be used to cycle
forward from 0 to 9 and back to 0:
es

.collect ({|v| {|st| (st+1). mod (10) } })

.injectF (0);

If the current value in injectF is 5 and the code is hot-
swapped to
es

.collect ({|v| {|st| (st -1). mod (10) } })

.injectF (0);

then on the next button press the state will be 4, with the
initial value of 0 being ignored and the old value of 5 being
used. It is possible to return all stateful nodes to their initial
values by calling NNdef(\x).clear and re-evaluating again.

5.2 Persistence
The state in the FRP network can also be persisted to disk,
allowing the instrument to be picked up in the same state
at a later time. JITLib Ndefs are usually persisted using text,
more specifically, as code which when interpreted yields
the original object, and NNdef follows the same pattern. Un-
fortunately, the hot-swapping mechanism described above
cannot usually be used for persisting the network as code, as
the state stored in the nodes can be an instance of any class,
including closures (the Function class), and closures which
have dependencies on external values cannot be persisted
as code in the SuperCollider language. It should be noted
that the use of the <%> combinator with a function of two or

FARM ’18, September 29, 2018, St. Louis, MO, USA Miguel Cerdeira Negrão

more arguments will automatically create a curried version
of that function. This new curried version is implemented
using closures, and therefore the current value of fsig in
fsig <*> ysig

where
fsig = f <%> xsig

is a closure and therefore cannot be persisted.
Since automatic persistence of the entire graph is not fea-

sible, instead the state in selected nodes can be explicitly
persisted using specific methods whose name ends with
Store. Each node created with a store method is associated
with a name, and its current value is updated in a dictionary
in the NNdef while the FRP graph is running. Calling asCode

on an NNdef will include one .enSet(name, value) instruc-
tion for each element in the dictionary. These instructions
when interpreted will restore the saved state of the selected
FRP nodes.

The store nodes are also useful when changing the shape
of the FRP graph while livecoding, as in that case the au-
tomatic how-swap will not activate, and therefore the pre-
vious state of nodes which are present before and after re-
evaluation is lost. On the other hand, any state saved via
store nodes will be picked up when re-evaluating an NNdef
while livecoding.

Signals have a store method, since signals have state
which corresponds to the last calculated value. In order
to save the state of an NNdef the current value in specific
signal nodes must be saved (usually those that are used
with <@> and related combinators). The internal state of an
injectF or injectFSig node can be persisted by switching
to injectFStore or injectFSigStore. When creating a signal
from an event source it might also be desirable to make the
created signal node persistable in one go, in which case the
holdStore method can be used.
In the following example the play and rewind buttons

of a Korg NanoKONTROL are used to select the current
octave (the state), while the two rows of buttons are used to
select the current note in the twelve note equal temperament
tuning. The play and rewind buttons’ events are associated
with functions that sum and subtract one from the current
octave respectively11.
var octUpES = k[\tr][\fwd]

.enIn.select(_==1)

.collect ({|v| {|x| (x+1). min(3) } });

var octDownES = k[\tr][\rew]

.enIn.select(_==1)

.collect ({|v| {|x| (x-1). max(-3) } });

The injectFSigStore method is used to store the current
octave with persistence, also creating a signal.
11The code in this example would have to be surrounded by
NNdef(\x,{ ... }).

var octaveSig = (octUpES |+| octDownES)

.injectFSigStore (0, \octave)

.enDebug (" octave ");

Each button of the NanoKONTROL is then associated with a
note, whose frequency is computed using the current value
in the octave signal. The event streams from all buttons are
merged and converted to a signal with an initial value.

var f0 = 100, page = 0;

var twoRowsOfbuttons = k[\bt][page];

var allButtons = twoRowsOfbuttons

.flat [..12];

var freqSig = allButtons.collect ({ |but ,i|

var butES = but.enIn;

var freq0 = f0 * (2**(i/12));

var f = { |oct| (2** oct)*freq0 };

var freqSig = f <%> octaveSig;

freqSig <@ butES

})

.mreduce //merge all event sources

.hold(f0); //start with f0=100Hz

Finally, the signal is connected to the audio network.

var freq = freqSig

.enKr(lag: 0.1, key:\freq);

RLPF.ar(Pulse.ar(freq), 1000, 0.1)

The initial value of the octave can be set (or recalled from
disk) using enSet.

NNdef(\x).enSet(\octave , 2)

Regarding the implementation, the FPSignal storemethod
creates a secondary EventStream which is merged with the
FPSignal’s internal event source (FPSignal is implemented
using an underlying EventSource). hold is then called on
the resulting EventStream. If the value in the state dictio-
nary changes due to enSet then the secondary EventStream
fires. If the original EventStream fires then the dictionary is
updated via a reactimate. Finally the initial value passed to
hold when creating the FRP network is obtained from the
current value in the state dictionary. The implementation for
injectFStore and injectFSigStore is similar but after the
merge the methods InjectF or injectFSig are applied (see
figure 2).

5.3 Inter-NNdef Communication
The persistence functionality can also be used for communi-
cation between the FRP graphs of different NNdefs. For this
purpose the store method can be considered an output node
of the FRP graph which can be connected to an input node
of a different NNdef by calling enIn on the NNdef with the
appropriate key:

NNdef FARM ’18, September 29, 2018, St. Louis, MO, USA

NNdef(\a, {

var k,f;

k = MKtl('nnkn0 '). elementGroup;

f = k[\sl][0][0]

.enIn.holdStore(0, \slider1);

SinOsc.ar(f.enKrUni(spec:\freq));

}). play;

NNdef(\b, {

var f;

f = NNdef(\a).enIn(\ slider1);

Saw.ar(f.enKrUni(spec:\freq));

}). play;

This mimics the way in which Synths belonging to differ-
ent Ndefs can also send and receive audio from each other
by automatic use of audio buses.
Sometimes values from control logic should affect mul-

tiple NNdefs, in that case it is useful to have one central
NNdef communicating with multiple "child" NNdefs using
this functionality.

5.4 Recursion
In some situations using recursion between elements of the
FRP network is the most intuitive way to solve a given prob-
lem. Recursion is often used when the previous value is used
to compute the current value. Unfortunately, unlike Haskell,
SuperCollider does not allow recursive definitions, therefore
to achieve the same result we need to "cheat".
Consider as an example the situation where one MIDI

slider is controlling the frequency of an oscillator and a
toggle button controls whether the the slider is in "zoom"
mode. When in "zoom" mode the same slider fine-tunes the
frequency within a much smaller range around the previous
value. This can be achieved using one zoom signal which, is
either zero if not in "zoom" mode, or the value of the slider at
the moment the instrument entered "zoom" mode otherwise.
We also need an (unmapped) frequency signal which is the
current value of the slider if not in "zoom" mode, or the
fine-tuned value otherwise. Note that these two signals will
depend on each other.

First we define zoomES in terms of freqSig:

mult = { |a,b| a*b};

zoomES = mult

.liftRecSampled ({ freqSig}, toggleES);

zoomSig = zoomES.hold (0);

We can then define freqES in terms of zoomSig:

freqES = { |zoom , slider|

if(zoom != 0) {

slider // linear interpolation

.linlin (0.0,1.0,zoom -0.1, zoom +0.1)

} { slider }

} <%> zoomSig <@> sliderES;

freqSig = freqES.hold (0.5);

It would be natural to use instead the definition

zoomES = mult <%> freqSig <@> toggleES;

, but this is not possible in SuperCollider since freqSig is not
yet defined at that moment. The method liftRecSampledwas
created to circumvent this issue. It works as follows: freqSig
is passed to liftRecSampled wrapped in a closure in order
to delay evaluation. On an incoming value from toggleES,
the closure is evaluated and the current value of the signal is
directly extracted (something which is not allowed in pure
FRP). With this "hack" it is possible to create at least some
recursive definitions inside an NNdef.

6 Further Work
Currently each NNdef has a set of fixed, constantly running
synths paired with corresponding FRP networks. The cur-
rent work could be expanded by exploring FRP networks
which create and destroy synths dynamically, for instance
for generating note patterns, possibly also interacting with
the SuperCollider patterns system and JITLib’s Pdefs.

With the current interface the flow of data is unidirectional
from the FRP network into the audio network. The flow could
be made bidirectional by allowing the creation of input nodes
in the FRP network which obtain their events by polling the
audio output of a UGen in the audio graph.

7 Conclusion
The NNdef class demonstrates that, with some limitations,
it is possible to implement FRP in a language such as Super-
Collider, following quite closely an interface commonly seen
in Haskell libraries. NNdef enables defining the audio and
FRP graph simultaneously, which facilitates constructing the
different components of an instrument with minimal dis-
tractions. Features such as automatic NamedControl names,
and compact syntax for mapping values when crossing from
event to audio network also aid in this regard. The presented
hot-swap functionality allows livecoding the control logic of
a musical instrument. An approach for persisting the state
in the FRP graph was also described.
NNdef should enable a more playful experience when

developing a digital instrument in SuperCollider by using a
high-level declarative approach, removing some of the more
tedious tasks and allowing an interactive workflow.

Acknowledgments
Part of this material is based upon work supported by the
Foundation for Science and Technology Portugal under Grant
No. SFRH / BD / 76694 / 2011.

References
[1] [n. d.]. Raspberry Pi - Teach, Learn, and Make with Raspberry Pi.

Retrieved 2018-07-31 from https://www.raspberrypi.org/
[2] [n. d.]. Reactive-Web. Retrieved 2018-07-31 from https://github.com/

nafg/reactive

https://www.raspberrypi.org/
https://github.com/nafg/reactive
https://github.com/nafg/reactive

FARM ’18, September 29, 2018, St. Louis, MO, USA Miguel Cerdeira Negrão

[3] Heinrich Apfelmus. [n. d.]. Reactive-Banana: Library for Functional
Reactive Programming (FRP). Retrieved 2018-07-31 from https://
hackage.haskell.org/package/reactive-banana

[4] Marije Baalman, Till Bovermann, Alberto de Campo, and Miguel Ne-
grão. 2014. Modality. Int. Computer Music Conf. Proc. 2014 (2014).

[5] Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The Yampa
Arcade. In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell.
ACM, 7–18. https://doi.org/10.1145/871895.871897

[6] Evan Czaplicki. 2012. Elm: Concurrent FRP for Functional GUIs. Ph.D.
Dissertation.

[7] Evan Czaplicki. 2013. Interactive Programming. Retrieved 2018-07-31
from http://elm-lang.org/blog/interactive-programming

[8] Evan Czaplicki. 2014. Elm Debugger. Retrieved 2018-07-31 from
http://debug.elm-lang.org/

[9] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.
In Proceedings of the Second ACM SIGPLAN International Conference on
Functional Programming (ICFP ’97). ACM, New York, NY, USA, 263–273.
https://doi.org/10.1145/258948.258973

[10] Conal M. Elliott. 2009. Push-Pull Functional Reactive Programming. In
Proceedings of the 2Nd ACM SIGPLAN Symposium on Haskell (Haskell
’09). ACM, New York, NY, USA, 25–36. https://doi.org/10.1145/1596638.
1596643

[11] Alberto de Campo Julian Rohrhuber. 2005. Algorithms Today: Notes
On Language Design for Just In Time Programming. International
Computer Music Conference (2005), 291.

[12] James McCartney. 1996. SuperCollider, a New Real Time Synthesis
Language. Int. Computer Music Conf. Proc. 1996 (1996).

[13] James McCartney. 1998. Continued Evolution of the SuperCollider
Real Time Synthesis Environment. Int. Computer Music Conf. Proc.
1998 (1998).

[14] James McCartney. 2002. Rethinking the Computer Music Language:
SuperCollider. Computer Music J. 26, 4 (Dec. 2002), 61–68. https:
//doi.org/10.1162/014892602320991383

[15] David Mellis, Massimo Banzi, David Cuartielles, and Tom Igoe. 2007.
Arduino: An Open Electronic Prototyping Platform. In Proceedings of
the Conference on Human Factors in Computing, Vol. 2007.

[16] Tom E. Murphy. 2016. A Livecoding Semantics for Functional Reactive
Programming. In Proceedings of the 4th International Workshop on
Functional Art, Music, Modelling, and Design. ACM, 48–53. https:
//doi.org/10.1145/2975980.2975986

[17] Julian Rohrhuber and Alberto de Campo. 2009. Improvising Formali-
sation: Conversational Programming and Live Coding. New Compu-
tational Paradigms for Computer Music. Delatour France/Ircam-Centre
Pompidou (2009).

[18] Julian Rohrhuber and Alberto de Campo. 2011. Just in Time Program-
ming. The SuperCollider Book, The MIT Press (2011).

[19] Ryan Trinkle. [n. d.]. Reflex FRP. Retrieved 2018-07-31 from https:
//reflex-frp.org/

[20] Matthew Wright, Adrian Freed, and others. 1997. Open Sound Con-
trol: A New Protocol for Communicating with Sound Synthesizers.
In Proceedings of the 1997 International Computer Music Conference,
Vol. 2013. International Computer Music Association San Francisco,
10.

https://hackage.haskell.org/package/reactive-banana
https://hackage.haskell.org/package/reactive-banana
https://doi.org/10.1145/871895.871897
http://elm-lang.org/blog/interactive-programming
http://debug.elm-lang.org/
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1162/014892602320991383
https://doi.org/10.1162/014892602320991383
https://doi.org/10.1145/2975980.2975986
https://doi.org/10.1145/2975980.2975986
https://reflex-frp.org/
https://reflex-frp.org/

	Abstract
	1 Introduction
	2 SuperCollider and Livecoding Using JITLib
	3 FRP and Livecoding
	4 FRP in FPLib
	5 NNdef
	5.1 Hot-swap
	5.2 Persistence
	5.3 Inter-NNdef Communication
	5.4 Recursion

	6 Further Work
	7 Conclusion
	Acknowledgments
	References

